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Generating fractal terrain

» The key concept behind fractals is self-similarity

» When a small region of a fractal is magnified, it looks similar to the
whole region from which it was taken

» Terrain has this property (loosely defined), which is why fractal
algorithms are commonly used to generate “realistic” landscapes

» The property of scale is important for field work, spatial correlation
occurs at all scales and how we choose to describe it will depend
on the organism (or process) being studied and the crudeness of

Spatial data as a process

>

We observe data generated from some underlying process we are
trying to understand

These data may be observational (e.g. bird counts in a forest) or
the researcher may have had a hand in the outcome (e.g.
designed experiment where different treatments were applied to
various locations)

We decide on a statistical model that we believe captures the
effects we are interested in

the tools available. » We estimate its parameters and possibly try to interpret them
» We typically classify the variation in the landscape we see into
large scale variation, which we might try to explain with regression Natural Spatially N Develop Estimate
type variables (e.g. elevation), and small scale variation, which we PIOCESSes | — | correlated statistical | —» p:‘r:g"r:gi;s
try to explain using a model of spatial dependency (e.g. kriging). Manipulations data - model predictions
Causes of spatial correlation Realizations

» The spatial correlation in the data may be partly (or completely)
due to our not having suitable variables to explain why
observations closer together are more similar

» Sometimes the spatial correlation is due to interactions among the
organisms themselves (e.g. root competition, aggregation), so
additional covariates (predictor variables) would not help

. Interactions
Missing
p among
covariates .
organisms

\/

Need to model
spatial
correlation

We have formal models for describing spatial correlation

We choose one consistant with the spatial pattern of our
observations

The data observed are not unique to that statistical model
The data are one realization of this statistical model

Looking at many realizations helps to better understand what
kinds of sample data this model can generate

other data ,, other data
»

gther data

Spatially E—
correlated data
you observed «

Spatial model —» other data

other data ¥ / v A other data

‘/ other data

other data
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Two realizations
noise ~ N(0, 1)
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Two realizations of strongly spacia{y

correlated data
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» spatially correlated observations look “smoother”, some of this is
due to scaling

» There are regions of high and low observations with spatial
correlation, this pattern may be masked by covariates or
treatment effects when looking at “real” data

» You cannot determine the degree of spatial correlation by looking

at these plots, we use a tool called the variogram for that

» Strongly spacially correlated data is often symptomatic of a failure

to adequately model the “trend” (large scale variation)

--------
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Decomposing the landscape:

Large

scale variation

>

Typically thought of as the trend, variation on a scale much larger
than distances between observations

Important to capture all explanatory variables making up the
trend, otherwise the residuals may be “non-stationary”, which will
make modeling small scale variation difficult

Especially important to capture explanatory variables that vary
spatially (spatially varying covariates)

In designed experiments, blocking is used to capture some of the
large scale spatial variation and randomization within the block to
reduce the impact of small scale variation

Large scale variation is typically handled using covariates (e.g.
elevation, soil characteristics, latitude and longitude) and ANOVA
type variables (e.g. treatments/interventions, historical land use,
type of vegetation cover)

Decomposing the landscape:

Small

scale variation

>

Sources of variation not associated with the trend, and at a
smaller scale

Typically imagined to have two components, a smooth function
which describes the covariances (correlations) between
neighboring observations, and random error (or noise)

The scale of small scale variation is larger than the smallest
distance between observations (typically several times larger)

What may be considered small scale variation in one study may
be large scale variation in another.

We ignore spatial relationships that occur at scales not captured
by our data.

Stationarity

>

We need to make simplifying assumptions to model small scale
variation

Spatial correlation necessarily involves pairs of observations

Data sets with more than 3 observations, have more pairs of
observations than observations

We want the number of parameters in a model to be (far) less
than the number of observations.

In the simplest case, assume spatial relationships between
observations are the same everywhere in the landscape, i.e. that
the spatial relationships only depend on the distance between
observations

This property is stationarity

Stationarity

>

Often this is not realistic, we may have to allow for spatial
relationships to depend on direction (so observations may be
more correlated going north to south than east to west), or for
them to vary in some other way across the landscape.

In general, raw data will not be stationary until the large scale
variation is removed, so one must first deal with large scale
variation before tackling small scale variation

In the remainder of this presentation, we assume stationarity, but
for real data, this would need to be verified.
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Short distances
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Long distances
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2%(h) is the classical estimator of the variogram; h is the distance separating the
observations

Comparison :
Comparison of short (0.09 units apart) and long (0.2) distance pairs.
distance obs.1 obs.2 24(h); = (obs. 1 — obs. 2)? .

short 067 078 2.10 .

short 147 152 0.00 .

short -0.82  -0.00 0.67 .

short 112 -0.38 0.54 :

long 067 140 4.27 .

long 1.47 2.20 0.54

long 082 028 1.22 :

long -1.12 -0.40 0.52
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If there is small scale spatial autocorrelation, we expect observations
near each other to be more similar than ones further away

Variogram

» This was seen in our example, 25(0.09) = 0.83 < 27(0.2) = 1.64

» The pattern that emerges, if we plot distance () on the x-axis and
24(h) (or 4(h), the semivariogram) on the y-axis, should tell us
something about small scale variation

» #(h) should be small when the distance h is small, 4(h) should be
larger as the distance & increases

» What is the best way to do this?
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Variogram

» If we look at the distribution of pairs of observations by distance
apart, we find that there are far fewer pairs of observations
separated by large distances

» Thus, our estimates 4(h) for k large will not be as good as 5(h) for
h smaller

» If our data are not evenly spaced, we may find the same problem
for h very small, there may only be a few pairs that represent the
smallest distances

» This means that some regions of the semivariogram have better
support than others

Variogram

» To create the semivariogram, we break h up into many distance
groups (e.g. 0-0.2, 0.2-0.4, 0.4-0.6, etc.) and calculate §(h) for
each distance group.

» Then we can plot the average value of i for that distance group
against 4(h)

» We can also plot 4(h); for each pair of observations, this may help
us decide if the average value for each h is a reasonable estimate
of what the “mean” should be

» In practice, we have software that does this, though we may make
decisions about how large an interval each distance group should
be, and what our largest 4 should be (since beyond a certain h
results will be rather flaky as there aren’t many pairs of
observations for very large h)

Variogram (7(h) vs. h)
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Variogram: What have we learned?

» The variogram nicely displays the similarity of neighboring
observations, and how differences between observations increase
with increasing distance

» Even with n = 676 observations, the empirical semivariances do
not follow the true semivariances beyond i = 0.5 units (distance
between the two furthest observations is 1.4 units)

» These data were generated from a known model (where we know
the true parameters), yet there are still problems with the
variogram

» We could regenerate data sets from this model until we created
one that produced a nice variogram, but one cannot do that for
“real” data
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Variogram: What have we learned?

» The box plots show how variable the individual semivariance
estimates are for each distance class

» The variogram is an imperfect tool, but in practice it works well
» There are robust procedures for estimating the variogram

Variogram—what model to use?

» Software for modeling spatial data will have many different models
that one can use to capture the spatial autocorrelation

» These models differ in how the strength of the correlation between
observations diminishes as distance between them increases

» The data for this example were generated using an exponential
model

» Many of the models produce very similar results (and you might
need a lot of data to be able to discriminate between models)

» It is more important to try to capture the spatial dependencies with
some model, even if you aren’t sure it is the “right” model, then to
ignore the spatial dependencies completely.

Three common variogram models
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Variogram—estimation of model pa-
rameters

» Once we have decided on a model for the data, we need to
estimate its parameters

» Many variogram models have parameters (or combinations of
parameters) that can be interpreted as the range, sill, and nugget
(these terms show geostatistics’ mining origin)

e The range is the minimumn distance separating observations
that are (nearly) spatially independent

e The sill is the value of (k) when h = range

e A nugget effect occurs if, as h (the distance between
observations) goes to zero, (%) does not approach zero

e The partial sill = sill — nugget
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Variogram models

Semivariogram v(h)
- Range
Partial |
Sill 2 sill
Nugget

B O . L L
0 20 40 60 80 100
Distance h

Image by Jay Ver Hoef

Variogram—estimation of model pa-
rameters

» A least squares approach (i.e. regresson equation) is common

» The least squares approach is usually modified so that it gives
more weight to small ~ (where it is most important to have a good
fit) and to areas of the variogram that have the most pairs of
observations

» Robust methods have also been developed

» The software typically does this fitting, you only select the model
you want to use and options for how to do the fit

» You then plot the graph against the variogram estimates (the
averaged or “binned” estimates, one for each distance category)
to check the fit visually

Variogram model parameters
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Variogram model parameters

» Two models were fit, exponential and linear, to the data up to
h =0.5.

» Note: These fits look good only because the distance was cut off
ath =0.5!
» Estimates for the variogram model parameters, nugget, partial sill,
range:
o Exponential: 72 =0.12, 02 =1.28, ¢ = 0.52
e Linear: 72=0.13,02 =151, $ = 1.00
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We now have a model for the spatial dependencies in our data.

Ordinary Kriging

» We can estimate a value at a particular location (which should be
within the general area in which the data were collected!)

» In this case, the uncertainty associated with the estimate will
depend on how far the location is from real observations and how
much spatial correlation exists

» If the location is further from any real observations than the range,
we get no “special” information from nearby observations and the
best estimate will be the mean

» Unlike, e.g. regression, a prediction at a location where we have
an observation just gives us back the value of the observation

» This is a technique that can be used for observations that are
unequally spaced as well regularly spaced (the example used
here is for regularly spaced data)
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Prediction at (x =0.27,y = 0.27)

point estimate = —0.376, kriging variance = 0.044
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» We can also create an estimate for the region (or some subset of
the region) in which the data were collected, e.g. the average
value

Predict a region

» The uncertainty associated with this estimate will depend on the
density of real observations in the region and how much spatial
correlation exists

» These kinds of estimates are performed by software, we need to
specify the model and what output we want
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Predict a region
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Predictions & variances—perspective
view

» Left plot: krigged surface (note how smooth it is!)

» Right plot: kriging variances (variance is zero where data were
taken unless there is a nugget effect)

Predictions & variances—typical out-
put

Relative prediction and variance values coded by intensity (black =
large values, white = low values)

predictions kriging variances

Y Coord
Y Coord

0.22 0.24 0.26 0.28 0.30 0.22 0.24 0.26 0.28 0.30

X Coord X Coord

Universal Kriging—estimation strategy

» We often have other information about the landscape we are
modeling, such as covariates or factors (e.g. treatment effects), in
which case we have a mixed model

» If we can subtract out these effects, then we can use the strategy
just discussed to model the spatially correlated residuals

» For the most common geostatistical models, mixed models
software can estimate all the parameters of the model (covariates,
factors, spatial covariance parameters)

» Unfortunately, there are deficiencies in the software (limited
spatial models, lacking good diagnostics)

Universal Kriging—trend and noise

» Left plot: trend (covariate + two-level factor) (note: covariate effect
not easy to see because it, in part, tilts the plane surface)

» Right plot: trend + noise (noise = spatially correlated residuals)
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Universal Kriging—estimation strategy Universal Kriging—estimate trend
» Added a covariate and factor effect to the spatially correlated » Although we already know the function to use for spatial
observations correlation of the residuals, we’ll pretend we don’t
» We assume the spatial correlation is unrelated to these effects » First estimate the trend assuming uncorrelated residuals.
» If we had no idea of the pattern of spatial correlation (of the
reS|duaIs), we mlght start out by > fitl <- 1m (datl ~ as.factor(fl) + covarl - 1)
e assuming that residuals are uncorrelated and estimate the > summary (£it1)
covariate and factor effect using a linear model
o subtract out their effects from the data Estimate Std. Error t value Pr(>|t]|)
o determine if the residuals are stationary, and if so as.factor(£1)0 -0.59867  0.05293 -11.310 < 2e-16 +xx
] ] ) . as.factor(f1)1 0.22169 0.05497  4.033 6.13e-05 #x+
e use a variogram to determine their pattern of spatial covarl 1 75290 0.03131 55.988 < 26-16 wxx
covariance
e re-estimate the model using mixed models software Residual standard error: 0.7184 on 673 degrees of freedom
Universal Kriging—model noise Universal Kriging—estimate full model
Semivariogram of the residuals
e R software, geoR package
3 o)
true semivariance o gdat2 <- as.geodata(cbind(x,y,datl))
8 o
c o o
'g O Q O o tsl <- trend.spatial (trend= ~ as.factor(fl) + covarl - 1)
€ <
s ° 2-0 fit2REML <- likfit (gdat2, trend=tsl, ini.cov.pars=expfit2$cov.pars,
S 6?=0.49 fix.nugget = FALSE, cov.model="exp", method.lik = "REML")
$=0.101
s T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
distance
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Universal Kriging—estimation results

beta0 betal beta2
0.2051 1.2540 1.0864

Parameters of the spatial component:
correlation function: exponential
(estimated) variance parameter sigmasqg (partial sill) = 1.118
(estimated) cor. fct. parameter phi (range parameter) = 0.3689
Parameter of the error component: (estimated) nugget = 0
> sqrt (diag (f£it2REMLSbeta.var))
0.5106032 0.5107846 0.1098927

Estimates ignoring spatial correlation:

Estimate Std. Error t value Pr(>|t])

as.factor(f1)0 -0.59867 0.05293 -11.310 < 2e-16 #*#*%*
as.factor(f1)1 0.22169 0.05497 4.033 6.13e-05 x*x
covarl 1.75290 0.03131 55.988 < 2e-16 #*#*%*

Universal Kriging—estimation results

These results closely match those using the nime R package:

> fit3 <- gls (datl ~
corExp(c(1,0.1), form =

as.factor (fl) + covarl - 1, corr =
~ x + y, nugget = TRUE))
> summary (£it3)
Generalized least squares fit by REML
Correlation Structure: Exponential spatial correlation

Formula: "x + y

Parameter estimate(s):

range nugget
3.688905e-01 3.302637e-09

Value Std.Error t-value p-value
as.factor(£1)0 0.2050859 0.5105995 0.401657 0.6881
as.factor(f1)1 1.2539898 0.5107810 2.455044 0.0143
1.0863683 0.1098926 9.885727 0.0000

1.057395

covarl

Residual standard error:

Universal Kriging—model comparison

Comparison of results from ignoring spatial correlations versus
incorporating them into the model

» for the fixed part of the model (covariate + factor), parameter
estimates and standard errors differ

» differences in parameter estimates are not that large once
centering has been taken into account

» standard errors are much larger for model with correlated
residuals, this shows that ignoring spatial autocorrelation
produces incorrect tests on factors (e.g. treatment effects)

» estimation time for the linear model was < 1 sec., for the model
with autocorrelated residuals, > 10 min. (n = 676)

Important concepts not covered

Isotropy—anisotropy
non-Euclidean distance measures
Diagnostics

>
>
>
» Transforming data that are not normal
» Robust methods

>

Variances/standard errors for kriged estimates

THE END
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